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The role of action plans and other cognitive factors in
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When observers are asked to remember the final location of an object undergoing
apparent or implied motion, a forward displacement is observed. The magnitude of
this form of motion extrapolation is known to depend on various factors including
stimulus attributes, action plans, and other cognitive cues. Here we present a
modelling approach that aims at bridging different existing theories of displace-
ment within a single theoretical framework. A network model consisting of
interacting excitatory and inhibitory cell populations coding for stimulus attributes
like position or orientation is used to study the response to motion displays. The
intrinsic network dynamics can be modulated by additional information sources
representing action plans directed at the moving target or cognitive cues such as
prior knowledge about the trajectory. These factors decide the extent to which the
dynamic representation overshoots the final position. The model predictions are
quantitatively compared with the experimental findings. The results are discussed
in relation to theoretical ideas about processing principles underlying motion
extrapolation and a comparison with neurophysiological findings linked to
movement prediction is made.

How does the brain cope with dynamic events in the world? In everyday life, we
are frequently faced with the problem to plan or avoid contact with objects
undergoing smooth change, for instance in location or orientation. Our per-
ceptual system must in some way represent these events that unfold over time.
Valuable insights about the mechanisms underlying the processing of dynamic
information have been gained by analysing errors that observers share in
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common. When observers are asked to remember the final position of an object
presented in motion (including implied motion and apparent motion) they
typically misremember it as further along the implied trajectory (for reviews see
Freyd, 1987; Hubbard, 1995). In analogy to classical mechanics this form of
motion extrapolation has been labelled ‘representational momentum’’ (Freyd &
Finke, 1984). The momentum metaphor refers to the notion that the internal
representation of target position may itself be dynamic (Freyd, 1987). Much like
the inertia of a moving physical object, it suggests that the internal repre-
sentation cannot be halted instantaneously upon stimulus offset but continues for
some time. The observations that the magnitude of the forward displacement is
impervious to error feedback and increases with higher (implied) stimulus
velocity have been taken as support for this conceptualization.

However, subsequent studies have directly addressed the question to which
extent this extrapolation process is indeed unconscious and effortless. A central
piece of evidence that representational momentum may be subject to ‘‘cogni-
tive penetrability’” (Pylyshyn, 1981) was the finding that expectations and
beliefs regarding the direction of the motion affected memory distortions.
Hubbard and Bharucha (1988) presented observers with a linear motion display
in which the target appeared to bounce off a wall. When the target vanished
just prior to or at the moment of collision, the displacement was in the direc-
tion of anticipated motion, rather than in the direction of current motion (see
also Verfaillie & d’Ydewalle, 1991). Even more direct evidence for a top-down
penetration of the extrapolation process came from studies showing that back-
ground knowledge from verbal instructions (Hubbard, 1994) and object-spe-
cific constraints (Reed & Vinson, 1996) may influence the magnitude of the
displacement.

Functionally, the prediction of movement is of particular importance when-
ever an ocular or manual motor action is directed at a moving target. There are
sizeable delays within the visuomotor pathway, which have to be compensated
for to guarantee for a successful action. It has been suggested that the com-
pensation is at least in part based on visual extrapolation of past trajectory
information (Nijhawan, 1994; Nijhawan, Watanabe, Khurana, & Shimojo,
2004). Converging lines of experimental evidence suggest that the integration of
action plans into the processing of positional information greatly enhances our
capacity to predict future positions of a moving object.

Wexler and Klam (2001) compared the position judgement for a target dis-
appearing behind an occluder when the target movement was action-generated
(by controlling a manipulandum) with a passive viewing condition. They found
that the prediction was systematically more advanced in the active compared to
the passive condition. This was the case despite the fact that an exact copy of the
actively produced trajectory was used for the passive movement prediction.

Motor tracking is another example showing that actions may become resident
in spatial perception. Kerzel, Jordan, and Miisseler (2001) investigated sys-
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tematically the influence of eye movements on representational momentum.
Observers were instructed to either fixate a fixation point or to actively track the
target in linear motion with the eyes. An important finding of this study was that
representational momentum occurred only with pursuit eye movements. This
outcome strongly supports the idea that motor plans caused the overshooting
since expectations about the future trajectory have to be created in order to
guarantee for a successful tracking behaviour.

In a series of experiments Stork and Miisseler (2004; see also Jordan, Stork,
Knuf, Kerzel, & Miisseler, 2002) showed that under the condition of smooth
pursuit the localization error appeared to be significantly reduced when the
stimulus offset was itself action generated. The intention to stop the target seems
to counterbalance the tendency for extrapolation due to the ocular motor plan.
This finding suggests that more than one action plan may simultaneously be
integrated into the processing of position.

In this paper we present a modelling approach which aims at bridging the
various theories about the processing principles underlying the displacement
within a single theoretical framework. We use a network model to study its
response to dynamic targets. The network consists of interacting excitatory and
inhibitory cell populations coding for stimulus attributes such as position or
orientation. In response to an apparent motion display the network develops a
wavy activity pattern in parametric space. The fundamental assumption behind
our modelling work is that recurrent interactions within the network may sustain
the dynamic transformations for some time upon stimulus offset. Cognitive
factors such as prior knowledge about the task setting and action plans directed
at the moving target are modelled as additional dynamic inputs to the network.
They may influence the extent to which the population response overshoots the
final target position.

A second purpose of this paper is to discuss within our theoretical framework
differences and similarities between dynamic representations of targets under-
going apparent motion and targets undergoing implied motion. This question is
important to address for understanding the functional nature of motion extra-
polation. The large interstimulus intervals (typically 250 ms) used in implied
motion displays prevent the network from triggering a coherently travelling
activity wave. Instead, the individual frames of the stimulus train are processed
independently, resulting in localized but stationary activity patterns in para-
metric space. However, we have recently argued that under appropriate condi-
tions the bottom-up signal may be continuously compared with a stored internal
model that predicts future states of the moving stimulus (Erlhagen, 2003). The
notion of an interaction between external sensory events and an internal mod-
elling process is in line with a growing body of empirical evidence that
emphasizes the role of top-down information for the recognition of familiar
dynamic sequences (e.g., Cavanagh, Labianca, & Thornton, 2001). We shall
show that the integration of a predictive model into the processing of parametric
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information about position or orientation may cause a drift of the dynamic
representations in the direction of implied motion.

The paper is organized as follows: We first present the architecture and
dynamics of our network model. The main part of the paper deals with a
comparison of model predictions and experimental data. We focus on the role of
action plans and other cognitive factors in the extrapolation of linear apparent
motion and present the fundamental findings for implied motion displays
separately. We finish the paper with a discussion of the functional consequences
of our results for the processing of dynamic events. We also compare the
processing principles implemented in our network model with recent neuro-
physiological findings linked to trajectory prediction.

THE DYNAMIC MODEL

The model network consists of an excitatory and inhibitory population of neu-
rons that code for the dimensions tested in the experiments. For the present
discussion of the representational momentum these dimensions are stimulus
position or stimulus orientation. Each neuron is parameterized by its visual
receptive field centre x. It is driven by external inputs representing bottom-up
information about the retinal location or the orientation of the visual stimulus
but its activity can be modulated also by top-down signals. The structure of the
recurrent connections within the network resembles an architecture first studied
by Wilson and Cowan (1973). Each excitatory neuron, x, integrates activity from
neighbouring neurons and projects via local connections to neurons of the
inhibitory population which belong to the same functional column and via lat-
eral connections to inhibitory neurons, x’, with distinct visual receptive field
centres (x # x'). Each inhibitory neuron is assumed to laterally integrate the
incoming excitation but to project back to the excitatory population locally only
(see Jancke et al., 1999, for details). For large neuronal populations the exci-
tatory and inhibitory activity at time ¢ in the network can be described by two
continuous functions, u(x, f) and v(x, f), respectively (Amari, 1977). The tem-
poral evolution of these activities is governed by the following mean-field
equations:

Ti(x, 1) = —u(x,1) + Sex (x, 1) + h + g(u(x,1)) {/ wy(x = xX)f (u(x',1))dx — v(x,r)

v(x,1) = —v(x,1) + Sin(x, 1) + / wy,(x — X )f (u(x', 1))dx’

where S,.(x, ) and S;,(x, ) are transient afferent inputs from sources external to
the network and /# < 0 defines the resting level to which field activity relaxes
without further stimulation. Gaussian profiles have been chosen for S,.(x, #) and
Sin(x, £). Their amplitude, 4,, and space constant, o, reflect the strength and
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half-width of the localized stimulations. The parameter 7 defines the time
constant of the dynamics. It is adjusted to reproduce the experimentally
observed time scales. The response function f, which gives the expected portion
of neurons at position x firing for a given level of excitation, is taken as a
monotonically increasing function of typical sigmoid shape:

fw) =1/(1 + exp(=5(u — uy)))

with threshold u,and slope parameter 3. The strength of the lateral interactions,
wy,(x, x) and w,(x, x'), is assumed to decay as a function of the distance between
sites x and x" in feature space. Gaussian decay functions with amplitude para-
meters 4, and A, and spatial constants o, and o, are chosen for the excitatory
and inhibitory population, respectively. In addition, as in many other field
models it is assumed that the effective interaction strength in the network is
inhibitory for sufficiently large separations between any two sites x and x’ (e.g.,
Wilson & Cowan, 1973). Finally, the interaction term in the excitatory field is
multiplied by a nonlinear function g(u) leading to a network of shunting type
(for a review see Grossberg, 1988). g(u) is assumed to be also of sigmoid shape
with threshold #, and slope (3. Functionally, this state-dependent nonlinear
signal serves to gate the lateral interactions by feedforward activation. For a
sufficiently large threshold u, the response properties of a neuron can only be
influenced by interactions if the neuron receives direct bottom-up input.
Important to the present paper is the fact that the gating mechanism influences
the extent to which the internal network dynamics may lead to an extrapolation
of past trajectory information into the future.

The link to the position judgement data reported in the experiments is brought
about by our basic assumption that localized activity patterns in parametric space
represent instances of the stimulus dimensions position or orientation tested in the
experiments (see Erlhagen & Schoner, 2002; Schoner, Kopecz, & Erlhagen, 1997,
for a similar conceptualization in the domain of motor planning).

The presentation of a brief localized stimulus S,.(x, f) of adequate intensity
leads to a model response known as an active transient. After stimulus offset the
activity in the excitatory layer at stimulated sites continues to increase, reaches a
maximum level and then decays back to resting level due to the increasing
inhibition in the network (Figure 1A). The localized response is centred over the
position x. throughout the whole evolution (Figure 1B). We have chosen the
time constant 7 = 35ms to assure that the duration of the active response
matches the visual persistence of a flashed stimulus (about 100 ms; Coltheart,
1980).

Importantly, there is a threshold for the ignition of this active response. The
external stimulation must be strong enough to trigger the self-stabilizing feed-
back loops. In the following we refer to this threshold activity level as uz and to
the corresponding stimulus intensity as Azy.
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Figure 1. Active transient response to a brief stimulus S,,(x, f) centred at position x... (A) The time
course of activation of the field element at x,. is shown. The arrows indicate stimulus onset and offset,
respectively. The dotted line indicates the threshold uzy for the active response, it is set to zero for
convenience. (B) A snapshot of the localized pattern at the moment of maximum activation is shown.
The response remains centred over position x,. throughout the whole evolution. Stimulus parameters
were: A; = 2.0, o, = 0.4 deg for the Gaussian profile and A7 = 15 ms for the stimulus duration. Model
parameters were: 7 =35ms, 1= —3, 3=1.0, uy=0, u, = —0.25, 4, =2.33, 0,= 0.3 deg, 4, = 1.99,
o, = 0.4 deg. To adjust the spatial scale in the model to the experimental units we have chosen 10
pixel = 0.1 deg.

In response to a continuously displaced stimulus of adequate intensity
(apparent motion paradigm), the network develops a localized wavy activity
pattern (Figure 2). The peak of the wave travels with the velocity of the inducing
display but spatially lags behind the actual stimulus position (Erlhagen &
Jancke, 2002). We have adjusted the parameters describing the interaction
kernels to guarantee that the balance between excitation and inhibition within
the network allows for the whole range of experimentally tested velocities for a
continuously travelling wave. The only model parameter which is changed
throughout this study is the threshold u, controlling the gating of the recurrent
interactions. For a sufficiently low threshold the cooperative forces within the
network may be strong enough to maintain the travelling wave without further
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Figure 2. Field response to a stimulus S,.(x, #) that is continuously displaced by a distance Ax
along a horizontal line. Each frame is presented for a time interval Az leading to an apparent velocity
v = Ax/At of the stimulus train. Only a part in the middle of the trajectory is shown. Stimulus
parameters were: 4; = 2.0, o, = 0.4 deg for the Gaussian profile, A = 10 ms for the frame duration
and Ax = 0.1 deg for the displacement. Model parameters were as in Figure 1.

bottom-up stimulation (Erlhagen, 2003). The parameters of the afferent input are
chosen to match as close as possible the spatiotemporal characteristics of the
experimental displays.

FORWARD SHIFT OF THE INTERNAL
REPRESENTATION

What happens with the dynamic representation of the moving stimulus when the
external input abruptly vanishes? Due to the nonlinear interactions within the
network the population response continues to travel in the direction of motion.
Recurrent excitation may trigger an active response also at positions, which have
not been directly stimulated. However, the amplitude and the velocity of the
propagating activity are predicted to continuously decrease since the excitatory
interaction forces are not strong enough to maintain the wavy activity pattern
without bottom-up stimulation. At a certain position forward to the vanishing
point the population response stops to travel and decays back to resting level.
Figure 3A illustrates this behaviour by showing the activity pattern at the time
when the stimulus vanishes at position x = 0 (dashed line) and at the time when
the pattern stops to propagate in the direction of anticipated motion. In the
following we use the peak position of the latter pattern to quantitatively compare
model predictions with the memory distortions typically observed when subjects
judge the vanishing point (by positioning a crosshair, for instance).

As illustrated in Figure 3B, the magnitude of the forward shift critically
depends on the gating mechanism for the recurrent interactions. Lowering the
threshold u, results in a larger extrapolation of past trajectory information into
the future. For sufficiently high thresholds u,, on the other hand, the spread of
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Figure 3. Overshooting of the dynamic representation. (A) Two snapshots of the population
response are shown. The left pattern represents the response at the time of stimulus offset, the right
pattern the response when it stops to travel in the direction of implied motion. The forward dis-
placement is defined as the distance between the peak of the latter pattern and the final stimulus
position x = 0. (B) The magnitude of the forward displacement as a function of the shunting threshold
ug is shown. It is plotted as a function of the dimensionless variable (u, — h)/(uy — h). Negative
displacements indicate that the dynamic representation dies out before it reaches the final stimulus
position. The rest of the model parameters were as in Figure 1. The stimulus parameters were: A, =
9.97, o, = 0.4 deg, and the apparent velocity was chosen as v = 20 deg/s.

excitatory activation to subsequent positions appears to be completely sup-
pressed. Recurrent inhibition within the network may even prevent the wave
from reaching the final stimulated site, leading to a negative displacement
(compare the rightmost data point in Figure 3B).

The observed overshooting of the internal representation is in complete
agreement with the momentum metaphor introduced by Freyd and Finke (1984).
The transformations evolve along the time dimension in a way consistent with a
moving physical object to which a stopping force has been applied. Moreover,
the postulation of an adaptive gating mechanism allows the incorporation of
other regularities that are invariantly present with moving objects without
changes in the spatial interaction structure of the network. For instance, a
gravity-like effect has been described in memory displacement. A stimulus
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moving downwards produced a larger forward shift than did a stimulus moving
upward (‘‘representational gravity’’; Hubbard, 1995).

A central piece of evidence for the physical analogy was the dependence of
the magnitude of displacement on stimulus velocity. Larger memory shifts were
found for targets moving at faster velocities. In Figure 4 we compare for
apparent velocities in the range between 10 and 20 deg/s modelling results
(asterisk) and experimentally observed displacements (plus) as reported in
Hubbard (1990) and Hubbard and Bharucha (1988). The nonlinear interaction
processes underlying the motion extrapolation in the model can explain quali-
tatively very well the experimental data. Interestingly, the peak of the population
response lags behind the actual vanishing point at the time of stimulus offset
(compare Figure 3A). Since this spatial lag increases with higher apparent
velocity of the inducing display (Erlhagen & Jancke, 2002), the velocity
dependence of the travelled distance after the target vanished appears to be even
more pronounced. However, for the spatial interaction ranges used in the
simulations the capacity to extrapolate turns out to be reduced when a stimulus
train with lower apparent velocity is applied. For velocities below about 9 deg/s
the localized activity pattern starts to travel less coherently, resulting in a
reduced drift in the direction of implied motion. Very likely, several pools of
neurons with spatial interactions covering different velocity ranges coexist
within the visual system (for a detailed discussion of the relation between the
spatial ranges of interactions and the wave velocity see Ben-Yishai, Hansel, &
Sompolinsky, 1997).
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Figure 4. The velocity dependence of the forward shift is shown for the model with fixed value u,
= —0.3 (asterisk) and compared with the experimental findings (plus). The values for v = 8.3 deg/s
and v = 12.5 deg/s are estimated from Figure 1 in Hubbard (1990), the value for v = 17.4 deg/s from
Figure 1 in Hubbard and Bharucha (1988). As in the experiments, different apparent velocities were
achieved by holding the frame duration, Az, constant and adapting the displacement, Ax, accord-
ingly. The stimulus width o; = 0.4 deg (4, = 9.97) approximately matched the radius of the circular
target used in the experiment. The model parameters were as in Figure 3.
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PREDICTABLE CHANGES IN MOVEMENT
DIRECTION

Thus far, we have shown that depending on the model parameters the pre-
sentation of a coherently displaced target may trigger a process of an automatic
extrapolation of prior trajectory information into the future. This process can
be stopped only by actively applying an opposing force to the network. The
findings reported in Hubbard and Bharucha (1988) suggest that observers’
beliefs and expectations concerning the future behaviour of the target may
represent such a force. Hubbard and Bharucha presented a circular target in
linear motion, which bounced off a wall at a predictable position. In the colli-
sion condition the target vanished at the moment of impact with the wall. The
fundamental finding was that the displacement was negative with respect to the
motion direction prior to contact. In other words, the subjects anticipated the
change in movement direction. In our model, we incorporate this additional,
cognitive contribution as a localized input, S;,(x), to the inhibitory population
at the field site representing the location of the wall. As a result, the neurons
coding for positions in the neighbourhood of the barrier become hyperpolar-
ized. The recurrent interactions may thus not be sufficiently strong to guarantee
for a dynamic representation reaching the vanishing point. The spatial range of
this active inhibition can be estimated by considering also the ‘‘precollision’’
condition of the experiments. For a vanishing point at a distance of about 1.6
deg to the wall a much smaller but still significant negative displacement was
found. We have adjusted the width parameter, oy, of the input signal S;,(x) to
quantitatively account for the experimental data (Figure 5). It is important to
stress again that for a negative displacement to occur the observer must know
in advance that the target bounces off the wall. Hubbard and Bharucha tested
also the collision condition when the target was expected to crash through the
barrier. Compared with the target motion without obstacle the displacement
appeared to be reduced, but it did not reverse direction. For the tested velocity
of 14.5 deg/s we expect a shift of more than 1 deg (Figure 4), which has to be
compared with the reported 0.2 deg (rightmost data point in Figure 5). The
physical presence of the wall affects the magnitude of the displacement. The
presence per se, however, does not explain the anticipation pattern. The model
network may account for this finding in the ‘‘collision-crash’’ condition by
appropriately reducing the strength, 4, of the signal S;,(x) (Figure 5). This
changes the relative weight of the different contributions for the processing
towards the bottom-up input stream. Moreover, assuming that the signal may
be itself subject to cognitive penetrability allows the explanation that verbal
instructions may alter the displacement pattern in otherwise identical displays.
In the experiments reported in Hubbard (1994) subjects were visually presented
with the cue word ‘‘bounce’’ or ‘‘crash’ in the collision condition. The precue
could be valid or invalid. In valid crash trials the forward displacement was
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Figure 5. Comparison of model prediction and experimental findings for a linear motion paradigm
with a change in direction at a predictable position (‘‘bouncing off a wall’’). In the precollision
condition the target approached the wall and vanished about 1.6 deg away from the wall, in the
collision-bounce condition the target vanished at the moment of impact with the wall. The observed
negative displacement pattern is captured by the model when assuming an additional input S;,(x) (Ag
=4.43, o, = 0.9 deg) to neurons of the inhibitory population representing the position of the wall. In
the collision-crash condition observers expect the target to crash through the wall. A small forward
displacement was observed when the target vanished at the moment of impact with the wall. A
reduction of the input strength A, of S;,(x) to 20% of its original value allows explaining also this
observation. The moving stimulus (4, = 1.99, o, = 0.4 deg) matched the apparent velocity, v = 14.5
deg/s, used in the experiments. Model parameters were as in Figure 4.

systematically larger compared to the invalid trials, suggesting the application
of a weaker stopping force.

THE INTEGRATION OF ACTION PLANS

Visual motion extrapolation as revealed, for instance, by the representational
momentum has predominately been studied under conditions in which a direct
binding of the moving object in an action plan was not required. However, in
paradigms, which demand a strong perception—action coupling, the need for
some from of predictive behaviour becomes even more evident. When trying to
catch an object in motion the accurate timing of the hand movement is crucial.
There are significant processing delays both along the visual and the motor
pathway, which have to be compensated for in order to guarantee for a
successful action. It has been suggested that the central nervous system uses
forward models to predict the sensory consequences of motor commands sent to
an effector, such as the hand (Wolpert, Ghahramani, & Jordan, 1995). This
would allow the provision of the missing feedback information with negligible
delays, thus maintaining stability. Furthermore, it has been argued that motor
learning, which includes an adaptation of the forward model, would be sufficient
to compensate for all visuomotor delays (Eagleman & Sejnowski, 2000; Wolpert
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& Ghahramani, 2000). However, we agree with the argumentation of Nijhawan
and colleagues (2004) that there is no a priori reason to restrict predictive
mechanisms exclusively to the motor side. In what follows we will show that the
integration of motor plans in our model network coding for position may lead to
visual motion extrapolation. The modelling results thus support the notion that
beside perceptual history (Nijhawan, 1994) additional information sources may
be used by the visual system to actively compensate for processing delays. It is
yet not completely clear where in the distributed sensorimotor system the
integration process may take place. However, several lines of recent experi-
mental evidence indicate that the parietal lobe plays a crucial role (see the
Discussion).

Actively produced movements

Intuitively, one would expect that the link between action and perception is
closest whenever the attended object motion is self-produced, for instance, by
controlling the motion with a joystick. In a recent study, Wexler and Klam
(2001) directly compared the prediction of future positions for actively produced
and passively observed motion trajectories. They asked subjects to estimate after
a variable delay the position of a moving target that disappeared behind an
occluder. Despite the fact that in the passive condition the exact spatiotemporal
trajectory produced in the active case was used, the prediction appeared to be
systematically more anticipatory when the motion was self-generated.

To illustrate the impact of a predictive motor signal on the processing of
positional information, we compare in Figure 6 the network response in the
passive case (A) and the active case (B) using a typical representational
momentum paradigm with externally controlled stimulus offset. The process of
integration of the motor signal is constraint by two basic assumptions. First, the
motor input to the position field is predicted to continuously precede the onset of
the bottom-up stimulation by a constant time interval AT. It is generally
believed that a more centrally generated planning signal triggered by motor
outflow does not suffer the same processing delays as the retinal information.
Second, the motor planning signal is assumed to be subthreshold, that is, it does
not trigger an active response when presented alone. In psychological terms, the
effect of this signal can be best described as a predictive priming of the position
field. However, the subthreshold activation appears to be sufficient to shift the
whole population response forward (compare the position of the leftmost dis-
tributions). Moreover, the priming also causes the observed displacement in the
direction of implied motion. This can be clearly seen by comparing the network
response in the active and the passive case at the time of stimulus offset (dashed
lines) and at the time when the responses stop to travel (dotted lines). In the
simulation shown, the gating mechanism for the recurrent interactions was
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Figure 6. Integration of an action plan, S,.(x, ), into the processing. (A) Three snapshots of the
travelling wave are shown: The solid line plots the activity at a time before the last stimulus of the
sequence reaches the position field, the two other activity patterns represent the response at the time
of stimulus offset and the time when the wave stops to travel in the direction of implied motion.
Compared to the simulation in Figure 3A, the internal dynamics is less predictive due to a larger
threshold (u, = +0.5) of the gating mechanism for the recurrent interactions. The rest of the model
parameters were as in Figure 3. (B) The predictive action signal is modelled as an additional input,
Sacdx, £), which travels with the velocity of the inducing display, but precedes the onset of the
bottom-up stimulation by a constant time interval AT = 90ms. The population response to the
stimulus train used in (A) now appears to be shifted in the direction of motion. For simplicity, we
modelled S,.(x, ?) as a continuously displaced Gaussian profile (¢,., = 0.4 deg, 4., = 1.52 < Ary).

adjusted to guarantee that only a very modest displacement forward to the
vanishing point x = 0 can be observed when the bottom-up signal exclusively
drives the network. In the active case, on the other hand, the population response
appears to be already ahead of the vanishing position at the time when the last
stimulus reaches the position field.

In conclusion, the modelling results strongly suggest the application of a
classical representational momentum paradigm in the case of an actively pro-
duced movement. We expect a significant forward displacement also in a
fixation condition. It would be also interesting to use a relative judgement task
with accompanying flash to further elucidate the impact of action plans on
spatial perception. On the assumption that the action plan produced in relation to
the moving stimulus does not affect the processing of position of the flash, we
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expect a significant larger flash-lag effect (Nijhawan, 1994) compared to the
passive case with identical trajectory.

Motor tracking of the moving target

Although the potential role of eye movements for memory displacement has
been discussed in the literature from the beginning on (see Hubbard, 1995, for a
review), an eye movement account for the representational momentum has been
systematically investigated only recently. As a motivation for their study, Kerzel
et al. (2001) argued that a contribution of eye movement cannot be excluded,
since in the original work of Hubbard and Bharucha (1988) no fixation dot was
provided and eye movement was not controlled. The range of tested velocities in
the linear motion paradigm, however, was mostly adequate for smooth pursuit
eye movements.

Kerzel and colleagues (2001) utilized similar displays as Hubbard and
Bharucha (1988) but, in addition, instructed the observers to either fixate a point
slightly below the trajectory or to actively track the target with the eyes. The
fundamental finding of their study was that a forward displacement occurred
only with eye movements. This outcome is particularly surprising since the
perceived speed of the moving target is known to be larger in the fixation
condition (Aubert, 1886), suggesting also a larger inertia of the representation.
The lack of a significant overshooting in the fixation condition may be inter-
preted as further experimental evidence that the integration of an action plan into
the processing may cause motion extrapolation.

Conceptually, the study differ from the study of Wexler and Klam (2001) in
that the ocular pursuit does not drive the target. However, it can be argued that
during smooth pursuit perception and action are nevertheless very closely
linked. To guarantee that the eyes point accurately at the physical position of the
pursued stimulus, the motor signals must continuously specify a position that is
ahead of the current gaze direction. To be sure, the idea that the integration of
oculomotor plans and retinal information may cause localization errors has since
long been discussed in the literature (e.g., Hazelhoff & Wiersma, 1924; van
Beers, Wolpert, & Haggard, 2001). More specifically, a temporal misalignment
of the visual input signal and the motor outflow has been proposed as an
explanation of misperception phenomena during smooth pursuit (e.g. Brenner,
Smeets, & van den Berg, 2001; for a recent review see Schlag & Schlag-Rey,
2002).

To explain the findings of Kerzel and colleagues (2001) we have used the
model architecture with a predictive priming signal as an additional input. In the
sense of a forward modelling, this signal specifies the position onto which the
current motor command will bring the gaze. For the model, one intriguing
question concerns the bottom-up input to the position field when the eyes are
tracking the moving object. Assuming a perfect pursuit, the retinal image is
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constant. However, several brain areas including the parietal cortex have been
identified with neurons coding for target location in head-centred coordinates
(e.g., Andersen, Snyder, Bradley, & Xing, 1997). Taking into account an
additional coordinate transformation (for a modelling approach see Pouget &
Sejnowski, 1997) we can again assume an input stream, which matches the
apparent velocity of the moving target.

The magnitude of the forward displacement which can be explained by the
integration of the priming signal critically depends on the temporal misalign-
ment A7. We have used an interval of 90 ms to quantitatively match the
experimental findings. In Figure 7 we compare modelling results with the dis-
placements reported for the two tested target velocities. Note that a fixed interval
quite naturally explains the observed increase of the forward shift with higher
velocities since a faster activity wave travels a larger distance within this time
interval. The value of 90 ms is well in the range of the timing error proposed by
Brenner et al. (2001) to explain the mislocalization of flashed targets during
pursuit of a moving ring. The authors concluded from their position judgement
data that the error corresponds to a distance of pursuit travelled in about 100 ms.
Further experimental tests should manipulate the assumed time interval AT by
either increasing the processing delays for the bottom-up information (by
changing the target luminance for instance), or by using conditions that favour
anticipatory smooth pursuit (Kowler, 1989).

Action control over the vanishing point

Thus far, we have discussed examples that illustrate that the price the visual
system has to pay for a more accurate spatial percept of a moving stimulus may
be an overshooting of the internal representation when the stimulus abruptly
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Figure 7. The dependence of the size of the forward shift on velocity is shown for the model

(asterisk) and the experiment (plus). The experimental values are taken from Kerzel, Jordan, and
Miisseler (2001, Exp. 3). The time interval AT = 90 ms was constant for all three tested velocities.
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stops. Inversely, one might expect that the planning of an action, which causes
the offset of the moving stimulus at a self-defined position, will reduce the
localization error at the end of the trajectory. Of particular interest for the
present discussion is to what extent the intention to stop the target may coun-
terbalance the tendency to extrapolate due to the tracking of the target.

In a series of experiments, Stork and Miisseler 2004 (see also Jordan et al.,
2002) addressed this question. They designed a paradigm in which the vanishing
point was either defined by a bottom press of the observer (intention) or
externally by the computer (induction). Stork and Miisseler found that the for-
ward displacement observed with smooth pursuit eye movements in the
induction condition appeared to be significantly reduced when the observer
intentionally stopped the target. In Figure 8 we show a model simulation that
qualitatively reproduces this behaviour. To allow for a direct comparison, the
simulation differs from the case ““20 deg/s’’ in Figure 7 only in that an addi-
tional input, S, at the field side representing the intended stopping position, x =
0, is applied. The solid line plots a snapshot of the field activity well before the
travelling wave reaches the vanishing position. Note that at this time the signal
S;.: has already triggered an active response localized at x = 0. The subsequent
snapshots illustrate that the two activity distributions merge, but that the
population response does not overshoot the vanishing point since the intentional
input is strong enough to bind the representation at x = 0. To guarantee this
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Figure 8. Influence of an action-generated vanishing point on motion extrapolation. The intention

to stop a moving target, which is continuously tracked with the eyes, is modelled as a sustained input
Sin(x) centred at the intended vanishing position x = 0. Three snapshots of the temporal evolution are
shown. The bimodal distribution (solid line) represents the travelling wave and the field response to
the input S;,,. At a later time these two responses merge (dashed line), but the activity pattern stops to
travel and does not overshoot the position x = 0 (dotted line). The stimulus moving with 20 deg/s and
the input S, representing the predictive ocular motor signal were the same as in Figure 7. The

parameters for S;,, were 0;,, = 0.1 deg and 4;,, = 12. Note that a weaker input S;,, would lead to an
overshooting.
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binding over a longer time period, the input signal S;,, must continuously
activate the neurons representing the vanishing position since otherwise the
lateral inhibition in the network will cause a decay to resting level. This suggests
that the signal driving the cells must be actively stabilized (see the Discussion).
The nature of such a signal, however, is unclear. It may simply code the attended
location in space irrespectively of the action that stops the stimulus. Alter-
natively, it may represent the covert planning and suppression of a goal-directed
motor act (for neurophysiological evidence supporting the existence of covert
action plans see Snyder, Batista, & Andersen, 2000). This could be in principle
tested by using different effectors to produce the offset of the movement.

When observers had to fixate, Stork and Miisseler (2004) found no difference
in the position judgement for the action-generated and the computer-generated
condition. Importantly, the localization errors appeared to be consistently
negative, that is, opposite to the movement direction (but see Miisseler, Stork, &
Kerzel, 2002, for conflicting data). In the model, a high threshold u, for the
recurrent interactions leads to a travelling wave that does not reach the vanishing
point (Figure 3). Our model simulations reveal that the activity may even die out
before it reaches the border of the excitation triggered by the intention signal S,
(not shown). This finding suggest that all stimulus parameters that are known to
affect motion extrapolation in the experiments and also in the model to some
extent (e.g., contrast, shape, or velocity; Fu, Shen, & Dan, 2001) might be used
to test the spatial range of this intentional attraction.

IMPLIED MOTION DISPLAYS

Memory distortion at the end of a trajectory was first observed with implied
rather than apparent motion displays. In their seminal work, Freyd and Finke
(1984) presented observers with a sequence of three discrete positions of an
object consistent with the rotation of that object around its centre. In a typical
experiment, the large interstimulus intervals prevented from perceiving the
inducing display as a smooth rotation. The judged vanishing positions never-
theless support the notion of a mental extrapolation of the stimulus’ trajectory. A
comparison with the orientation of a probe stimulus presented after a retention
interval was used to quantify the forward shift and not a direct localization by
mouse pointing like, for instance, in the study of Hubbard and Bharucha (1988).
But this difference in methodology is not central for the purpose of this paper.
From a theoretical point of view a more important question concerns whether the
forward displacements observed with implied or apparent motion reflect the
same principles of representation. An answer to this question would broaden our
understanding of how the brain copes with dynamic events to predict future
states of the environment.

A hallmark of Freyd’s theory of dynamic mental representations (Freyd,
1987) is the assumption that dynamic information should be mentally
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represented even when there is clearly no sensory basis to detect changes. In the
model, the spatiotemporal characteristics of a typical implied motion display do
not promote the interactions between the dynamic representations of individual
stimulus frames. As we have seen, these interactions are necessary to establish
and stabilize a population response, which propagates in the direction of change.
We have recently proposed that a stored internal model of the moving stimulus
might be used by the visual system to allow for object permanence following
occlusion. The integration of such a top-down signal into the processing pre-
serves the continuity of the wavy activity pattern in situations where the con-
tinuity of the bottom-up information is temporarily disrupted (Erlhagen, 2003).
Similarly, we hypothesize here that a stored predictive model associated with the
stimulus ‘‘animates’” the sequence of static stimuli by filling-in dynamic
information (see the Discussion for an interpretation of this predictive signal in
terms of a covert action plan). Figure 9 illustrates the model architecture with
the bottom-up input, Sz,, and the top-down input, Sz,,, to the neural field
spanned over the parameter orientation. For our modelling work we applied a
bottom-up input with the spatiotemporal characteristics of the display used by
Freyd and colleagues (e.g., Freyd & Finke, 1984). Each stimulus was presented
with a 250 ms duration, and successive presentations were separated by a blank
interval of 250 ms and an angular disparity of 17 deg. The travelling activity
pattern representing the subthreshold top-down signal matched the implied
velocity of the inducing display.

In Figure 10 we compare snapshots of the dynamic representation at the
position of the last stimulus without (A) and with (B) integration of the internal
model. It can be clearly seen that the predictive top-down information causes a
drift of the representation in direction of implied motion. It is important to note
that this happens despite the continuous stimulation of the position x = 34
through the bottom-up signal.

The magnitude of the observed shift depends on the strength, 4, of the top-
down contribution to the orientation field. A relative weak subthreshold
contribution is sufficient to explain the experimentally observed memory
displacements (typically about 2-3 deg, e.g., Freyd, 1987). However, as shown
in Figure 11, much larger forward displacements can be achieved when
increasing the strength Az, to a level closer to the threshold Az,

A detailed discussion of the dynamics of the shift goes beyond the scope of
this paper. It depends on the time scale, 7, of the dynamics but also on the
relative timing of the two input signals (Erlhagen, 2003). Interestingly enough,
since the stimulus duration is longer than the persistence of the population
response (about 100 ms) a second active response is triggered. This activity
pattern, however, lacks the interaction with the internal model and appears to be
centred over the actual stimulus position throughout the whole evolution. This
might contribute to the observed decrease of the displacement with sufficiently
long retention intervals (Freyd & Johnson, 1987).
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Figure 9. Sketch of the model architecture for implied motion displays. In addition to the bottom-
up input stream, the neuronal population coding for orientation gets top-down information about the
moving target. This top-down input is represented by a self-stabilized activity wave, which travels
with the implied velocity of the inducing display (see Erlhagen, 2003, for details). The bottom-up
information consists of a sequence of discrete inputs representing the three target orientations used in
a typical implied motion paradigm (see text for more details).

DISCUSSION

When planning a motor action towards a continuously moving object the goal of
the visual system becomes one of estimating the current state and predicting
future states. It has been suggested that visual motion extrapolation is necessary
to compensate for the sizeable processing delays between the retina and higher
visual areas (Nijhawan, 1994; see also Nijhawan et al., 2004). But also when the
timing issue is not the most important one (for instance, because the motion is
only implied) it is functionally of advantage to create some expectation about
possible future positions. Typically, the visual system has to handle multiple
objects in the visual field, often in the presence of occlusion and background
clutter.
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Figure 10. Effect of the top-down input on the spatiotemporal characteristics of the population
response. (A) Four snapshots of the response after the presentation of the final stimulus at time ¢ = 0
are shown. The response is centred over the position x = 34 deg, representing the final orientation of
the target. Due to the long interstimulus intervals (250 ms) between successive presentations the
active response of neurons coding for orientation x = 0 or orientation x = 17 deg has already decayed
to resting level. The external stimulus (4, = 12, o, = 3.4 deg) was presented for 250 ms. (B) The
additional top-down signal caused a slight drift of the dynamic representation in movement direction.
For simplicity, we used a Gaussian profile (47, = 0.4, 07,, = 10.2 deg), which was displaced with
the implied velocity of the display, instead of the actively generated signal used in Erlhagen (2003).
Model parameters were: 7 =35ms, h = —3, =1.0,uy =0, u, =0, 4,=2.33,0,=10.2 deg, 4, =
1.99, 0, = 13.6 deg. To adjust the spatial scale in the model to the experimental units we have chosen
1 pixel = 0.34 deg. Note that the drift of the response does not depend on the range parameters
describing the lateral interactions. Larger values could have been chosen as well. This would lead to
broader activity distributions in parametric space.

In the modelling work presented in this paper we have identified basically
two distinct but not mutually exclusive mechanisms for motion extrapolation.
One is based on nonlinear interactions among neurons coding for position. As
shown in Figure 3, cooperative forces within the network may cause the con-
tinuation of the dynamic transformations upon offset of the moving target
resulting in a significant overshooting of the dynamic representation. Moreover,
they also lead to a partial compensation of processing delays, resulting in an
activity wave that codes a position close to the actual stimulus position. This
interaction-based mechanism can in principle take place at every processing
level along the visual pathway that consists of lateral connections. In fact, there
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Figure 11. The forward displacement caused by the top-down signal in Figure 10B is plotted as a
function of the input strength A7, of Sz,,. To allow for a quantitative comparison we have defined
the displacement as the distance of the peak position to the stimulus position x = 34 at the time when
the active response has decayed to 25% of its maximum level. The input strength is expressed as a
fraction of the threshold activity A7 necessary to trigger an active response.

is evidence that motion extrapolation begins already in the retina (Berry,
Brivanlou, Jordan, & Meister, 1999).

In the model, the magnitude of the forward displacement is controlled by the
threshold for the recurrent interactions. We hypothesize here that an adaptation
of this threshold may account for experimental findings that show the influence
of conceptual, path-independent knowledge on the forward displacement. This
includes object-specific effects described by Reed and Vinson (1996; see also
Vinson & Reed, 2002), but also motion invariants like gravity or friction, which
are believed to be internalized into the representational system (Hubbard, 1995).

A second mechanism for motion extrapolation is based on an integration of
additional information such as action plans into the processing of positional
information. Our basic assumption is that the interaction with a fast moving
target requires predictive models of both the motor apparatus and the attended
object.

Several lines of experimental evidence suggest that the posterior parietal
cortex (PPC) plays a crucial role in this predictive modelling. It is known that
efference copy signals from motor areas and sensory information from a number
of different neural systems do converge in PPC (for a review see Andersen et al.,
1997). There is now clear evidence that activity in different subareas of PPC
code for the intention to make saccades or reaches (Snyder et al., 2000).
Importantly, it was shown that parietal cells might predict the retinal con-
sequences of intended saccadic eye movements prior to the onset of the actual
movement (Duhamel, Colby, & Goldberg, 1992). Eskandar and Assad (1999)
found cells in PPC of macaques that seemed to monitor the trajectory of a
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temporarily occluded target whose movement was under the animal’s control.
We have recently shown that the integration of a sufficiently strong but still
subthreshold signal into our model architecture may maintain the suprathreshold
wave in the absence of direct sensory stimulation due to an occluder (Erlhagen,
2003). In the case of a self-generated movement this signal may represent the
predicted position of, for instance, the hand controlling the manipulandum.
Similarly, we argue here that also during smooth pursuit or other forms of motor
tracking (e.g., with the index finger; Grafton, Mazziotta, Woods, & Phelps,
1992) a predictive representation of the trajectory may be used to cope with
incomplete visual information and processing delays. However, it is unclear to
which extent such a representation continuously monitors the motor outflow
(e.g., a velocity signal) driving the eye or the hand. It might be that an initial
motor command triggers a representation that is to a large extent self-stabilized.
The prediction about future states would then continue until it is actively
stopped by another signal, for instance, the offset of the motor outflow. In fact,
we have proposed a field model for motor preparation in which action plans for
reaches or saccadic eye movements are self-stabilized by cooperative interac-
tions (Erlhagen & Schéner, 2002; Schoner et al., 1997). Moreover, we have
recently shown that recurrent network models similar to the one used in this
paper may exhibit a self-stabilized wave in parametric space, which travels with
a velocity defined by the interaction parameters (Erlhagen, 2003). The learning
of an association between a neuronal population representing a motor command
such as a velocity signal for a certain direction and a neuronal population with
the appropriate spatial interaction structure would automatically trigger the
corresponding predictive representation for position.

Assad and Maunsell (1995) and Eskandar and Assad (1999) described firing
patterns of neurons in PPC that are consistent with the idea of a predictive signal
about the direction of a moving object which is to some extent independent of
sensory input and motor output. These neurons fired during occluded trials
without hand or eye movements whenever the monkey could infer the move-
ment direction because of the direction-blocked organization of the experiments.
Assad and Maunsell suggested that this type of signal might act as an additional
contribution to the extra retinal responses, which converge during smooth pur-
suit on the medial superior temporal area (MST) and allow the maintenance of
pursuit eye movements. Moreover, these neurons might explain why in a
““‘motion area’’ such as MST the activity of some cells persists when the target is
transiently occluded (Newsome, Wurtz, & Komuatsu, 1988).

The fact that we are able to simultancously track several moving targets
despite brief periods of occlusion (Scholl & Pylyshyn, 1999) has been used as an
argument against an eye movement account as a sole explanation for repre-
sentational momentum (Finke & Freyd, 1985). Kanwisher and colleagues called
this attentive tracking ‘‘attentional pursuit’’ to stress the fact that like for smooth
eye movements the attentional focus can be maintained on moving targets. They
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reported fMRI activation pattern for attentive tracking, saccades, and smooth
pursuit with a “‘surprising amount of neuroanatomic overlap’’ (Culham, Brandt,
Cavanagh, Kanwisher, Dale, & Tootell, 1998). One possible explanation could
be that the proposed predictive modelling process, which is first triggered by
oculomotor outflow, becomes during learning directly associated with the visual
input (for the learning aspect, see Erlhagen, 2003).

It may be hypothesized that also the spatial perception of stimuli that are not
changing in real time is directly influenced by some kind of motor plan. In fact,
several authors have argued that implicit knowledge of motor rules for the
production of static images may affect their perception (for a recent review see
Decety & Grezes, 2001). On this view, the priming signal applied to model the
representational momentum for implied displays (Figure 10) would represent a
simulated action that may ‘‘explain’’ the coherent rotation of the object. The
only difference to the integration of an actual motor plan might be a reduced
relative strength of the subthreshold priming signal. The discovery of the
“mirror system’’ by Rizzolatti and colleagues (for a review see Rizzolatti,
Fogassi, & Gallese, 2001) provides physiological evidence in support of such a
simulation theory. It was shown that the mere observation of visual cues asso-
ciated with a particular motor action might automatically trigger the neuronal
representation of that action in the motor repertoire of the observer. The notion
of such a direct mapping from perception to action might be of particular
importance when attempting to explain movement prediction observed with
more natural displays including biological motion (see Thornton & Hayes,
2004).

In conclusion, we have shown that the intrinsic dynamics of our network
model triggered during the target’s seen motion may cause a ‘‘momentum’’ of
the dynamic trajectory representation. However, the experimental and theore-
tical results convincingly reveal that whenever overt or covert action plans are
integrated into the processing these plans decide to a large degree the extent to
which motion is extrapolated.
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